
5 Port Electro-Pneumatic Proportional Valve Series **VER2000/4000**

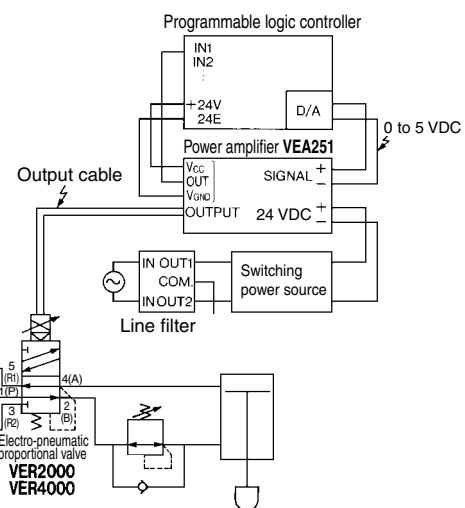
Capable of actuating a cylinder and performing analog control of pressurization

VER alone can be used to switch and actuate a cylinder and to perform stepless pressure control of port A through electric signals.

System Diagram

Application Example

Purpose


Electrode pressurization control for spot welding
Automatically varies the applied pressure in accordance with the material, thickness, and stacked quantity of the workpieces.

Auxiliary functions

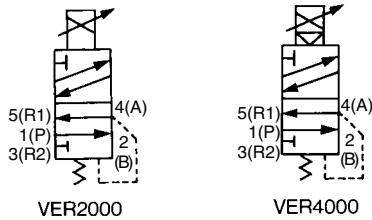
Through the use of a power amplifier that is equipped with an abnormality detection circuit,

- Open circuit in the output wire
- Malfunction in the 24 VDC power supply

 can be detected by a programmable logic controller, thus preventing defective workpieces or equipment damage.

ARJ
AR425 to 935
AMR
ARM
ARP
IR
IRV
VEX1□
SRH
SRP
SRF
ARX20
VCHR
ITV
IC
PVQ
VEF VEP
VER
VEA
VY2
VBA VBAT
AP100

Series VER2000/V4000



Standard Specifications

Item	Model	Direct operated type VER2000	Internal pilot type VER4000	External pilot type VER4001
Port size		$\frac{1}{4}$, $\frac{3}{8}$	$\frac{3}{8}$, $\frac{1}{2}$, $\frac{3}{4}$	
Fluid			Air	
Max. operating pressure			1.0 MPa	
Ambient and fluid temperature			0 to 50°C (No condensation)	
A port setting pressure range	0.1 to 0.9 MPa	0.1 to 0.9 MPa ⁽¹⁾	0.1 to 0.9 MPa ⁽²⁾	
Max. effective area (Cv factor)	16 mm ² (0.9)		52 mm ² (2.9)	
Response time	0.04 s		0.06 s	
Hysteresis			3% F.S.	
Repeatability			3% F.S.	
Sensitivity	0.5% F.S.		1.5% F.S.	
Linearity			3% F.S.	
Lubrication	Not required (Use turbine oil Class 1, ISO VG32 if lubricated.)			
Mass	1.24 kg	$\frac{3}{8}$, $\frac{1}{2}$: 2.20 kg, $\frac{3}{4}$: 2.81 kg		

 Note 1) Set the inlet pressure by 0.05 MPa or larger than the required maximum set pressure.
Note 2) Set the pilot pressure by 0.05 MPa or larger than the required maximum set pressure.
Note 3) The non-lubricated specification is not applicable to these models.

JIS Symbol

Proportional Solenoid Specifications

Applicable power amplifier	VEA25□
Max. current	1 A
Coil resistance	13 Ω (Ambient temperature 20°C)
Rated power consumption	13 W (Ambient temperature 20°C, with maximum current)
Coil insulation type	Class H or equivalent (180°C)
Max. temperature rise	140°C (Ambient temperature 50°C, with maximum current)
Electrical entry	DIN terminal

Manifold

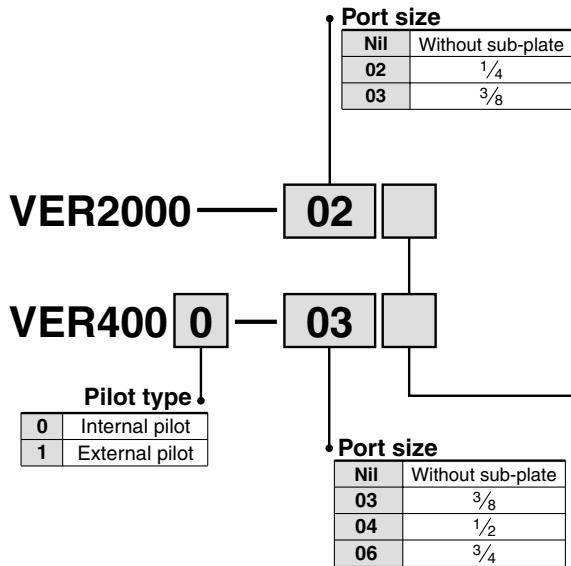
Can be made into manifold with series "VV72".
"VER2000" is V type.
(Refer to Best Pneumatics No. 1 for further information.)

Accessory

Model	VER2000	VER4000
Mounting screw (With washer)	M5 x 45	M6 x 53
Gasket	AXT500-13	AXT510-13, VER4-13
Feed back plate	—	VER4-3P

Option

Model	VER2000	VER4000
Spacer type regulator (B port regulator)	ARB210-00-B	ARB310-00-B
Flow control interface	AXT503-23A	AXT510-32A
Pressure gauge	G36-10-01	G36-10-01

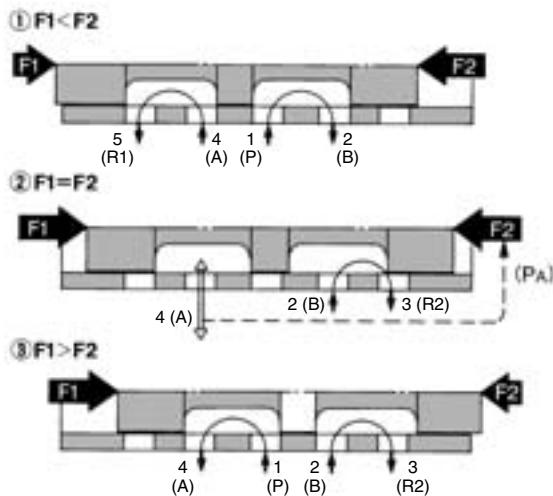

Model Selection

- Applicable cylinder bore size: Ø25 to Ø125
- For model selection, refer to "Selecting Electro-pneumatic Proportional Valve" on page 706.

How to Order

Series VER2000

Series VER4000


Note) To order valve with interface regulator (B port regulation), flow control interface, or pressure gauge, indicate part number of the electro-pneumatic proportional valve and that of the option *. Refer to "Option" on page 704 for part number of option. Products will be in the same package and not assembled when delivered.

Example) VER4000-03 1 pc.

* ARB310-00-B 1 pc.

* G36-10-01 1 pc.

Working Principle

F1: The pulling force of the solenoid when a specified amperage is applied to the solenoid, or the force that is created by the pilot pressure.

F2: The force that is created by the port 4 pressure (P_A) that passes through the feedback passage and acts on the spool surface, and the spring force.

OFF state

$F1 < F2$ condition: See figure ①.

$\left\{ \begin{array}{l} \text{Port 4 (A)} \rightarrow \text{Port 5 (R1)} \text{ [Exhaust air]} \\ \text{Port 1 (P)} \rightarrow \text{Port 12 (B)} \text{ (Supply air)} \end{array} \right.$

ON state

Immediately after turning on — $F1 > F2$: See figure ③.

$\left\{ \begin{array}{l} \text{Port 1 (P)} \rightarrow \text{Port 14 (A)} \text{ (Supply air)} \\ \text{Port 2 (B)} \rightarrow \text{Port 13 (R2)} \text{ (Exhaust air)} \\ \text{Port 4 (A)} \text{ (} P_A \text{ Setting)} \\ \text{Port 2 (B)} \rightarrow \text{Port 13 (R2)} \text{ (Exhaust air)} \end{array} \right.$

[In ②, port 3(R) is half open.]

ARJ

AR425
to 935

AMR

ARM

ARP

IR

IRV

VEX1

SRH

SRP

SRF

ARX20

VCHR

ITV

IC

PVQ

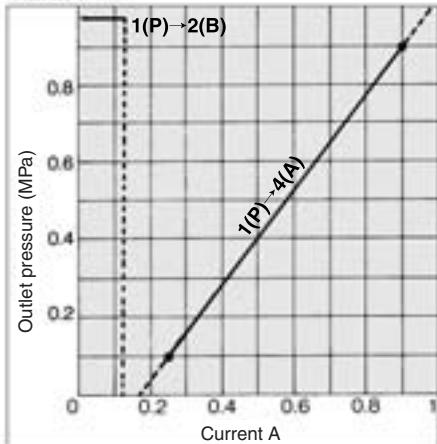
VEF
VEP

VER

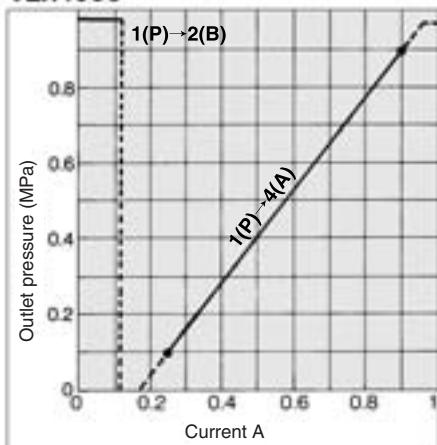
VEA

VY2

VBA
VBAT


AP100

Series VER2000/V4000


Current—Pressure Characteristics

The horizontal axis of the characteristics represents the output amperage of the power amplifier VEA25□. (If NULL and GAIN are in the shipping condition, 0 to 1 A can be viewed by substituting them with command signals 0 to 5 V.)

VER2000

VER4000

Selecting Electro-pneumatic Proportional Valve

The response behavior of an electro-pneumatic proportional valve is affected by the load capacity. Therefore, select an electro-pneumatic proportional valve in accordance with the bore and the stroke of the cylinder to be used. (The diagram below is provided as a guide.)

How to Find the Flow Rate

Air temperature of 20°C
Subsonic flow at $P_1 + 0.1013 < 1.89 (P_2 + 0.1013)$

$$Q = 226S/\sqrt{\Delta P} (P_2 + 0.1013)$$

Sonic flow of $P_1 + 0.1013 \geq 1.89 (P_2 + 0.1013)$

$$Q = 113S (P_1 + 0.1013)$$

Q: Air flow rate [ℓ/min (ANR)]

S: Effective area [mm²]

△P: Amount of pressure drop $P_1 - P_2$ [MPa]

P₁: Upstream pressure [MPa]

P₂: Downstream pressure [MPa]

Note) Correction for varying air temperatures:
Square the coefficient indicated in the table below with the flow rate that has been obtained from the above formula.

Air temp. (°C)	-20	-10	0	10	30	40	50	60
Coef. for compensation	1.08	1.06	1.04	1.02	0.98	0.97	0.95	0.94

Precautions

Be sure to read before handling.
Refer to front matters 42 and 43 for Safety Precautions and pages 287 to 291 for Precautions on every series.

Caution

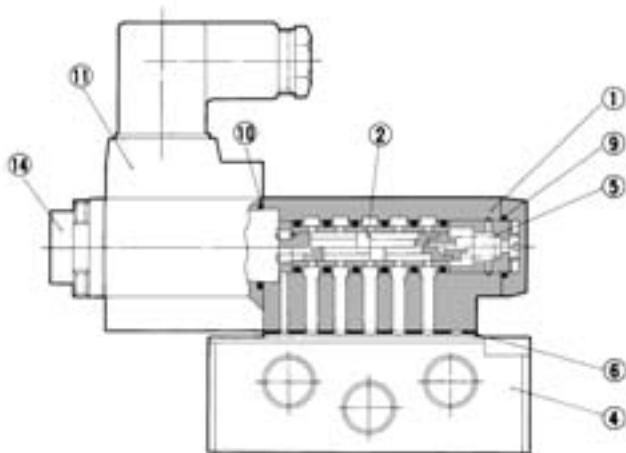
1. Air supply

- Poor quality air could increase the spool's sliding resistance, while preventing it from attaining its specified characteristics. Use compressor oil with a minimal generation of oxidants and install a mist separator (SMC's AM series). Refer to pages 2 and 3.
- Avoid using ultra-dry air since it may reduce the amount of lubricant and shorten the service life.

2. Mounting

- Vibrations are transmitted to the valve by the proportional solenoid's dither. If it is necessary to prevent the transmission of vibrations, insert vibration isolating rubber material.
- Thoroughly flush the pipe to completely eliminate any dust or scales from the pipe inside.
- Install a silencer (AN series) on the exhaust port.
- Be careful with the molded coil because it generates heat while current is applied to it.

3. Lubrication


This product can be used without lubrication. But if lubricated, use turbin oil Class 1, ISO VG32 (with no additive). It is impossible to use spindle oil, machine oil, or grease.

4. Manual operation

To check the operation of the valve without applying a current, remove the lock nut and use a screwdriver or the like to press the tip of the core. After checking the operation, reinstall the rubber cap in its original position.

Construction

VER2000

ARJ

AR425
to 935

AMR

ARM

ARP

IR

IRV

VEX1

SRH

SRP

SRF

ARX20

VCHR

ITV

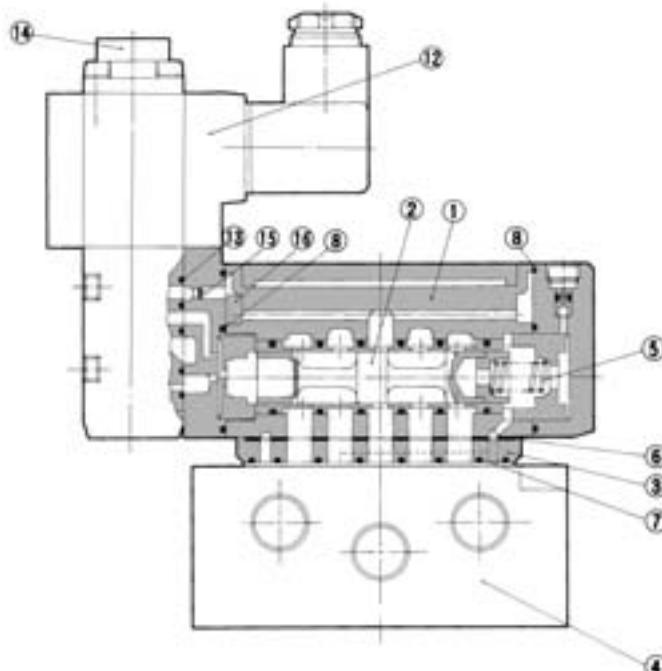
IC

PVQ

VEF
VEP

VER

VEA


VY2

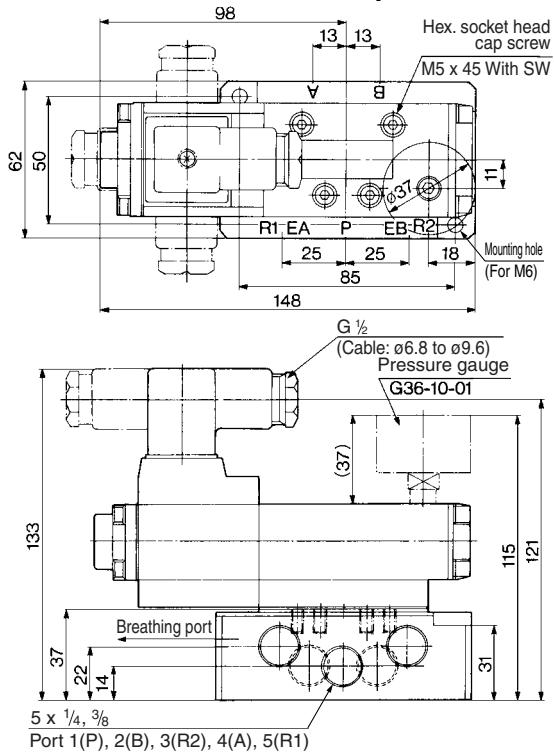
VBA

VBAT

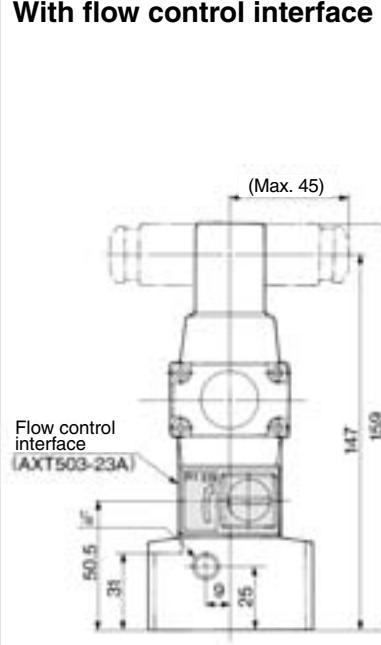
AP100

VER4000

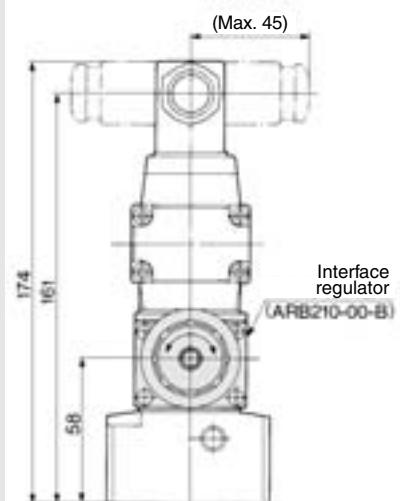
Component Parts

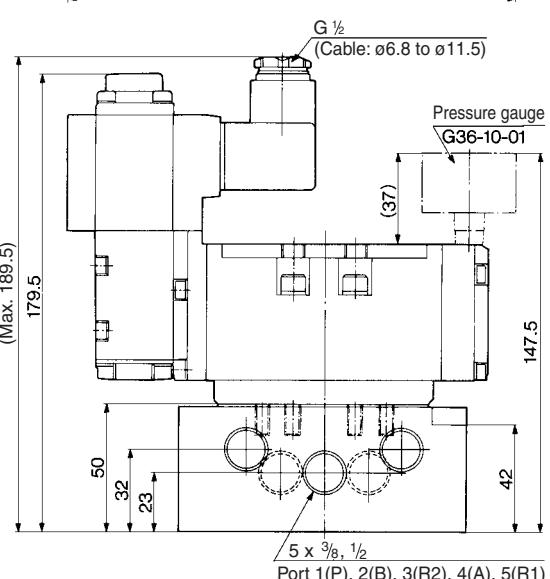
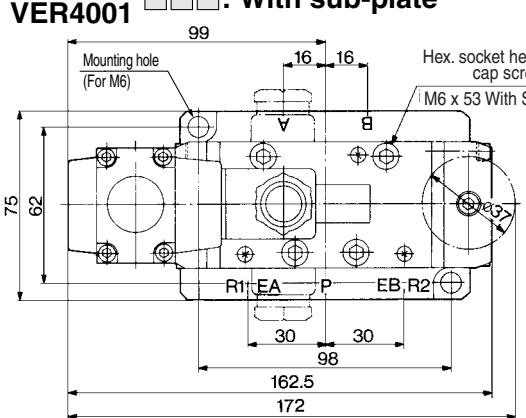

No.	Description	Material	Note	No.	Description	Material	Note
1	Body	Aluminum alloy	Metallic painted	9	O-ring	NBR	—
2	Spool sleeve	Special stainless steel	—	10	O-ring	NBR	—
3	Feed back plate	Aluminum alloy	Metallic painted	11	Proportional solenoid	—	—
4	Sub-plate	Aluminum alloy	—	12	Pilot valve assembly	—	—
5	Spring B	Stainless steel	—	13	Gasket	NBR	—
6	Gasket	NBR	—	14	Lock nut	NBR	—
7	Gasket	NBR	—	15	Filter	Stainless steel	—
8	Gasket	NBR	—	16	Block packing	NBR	—

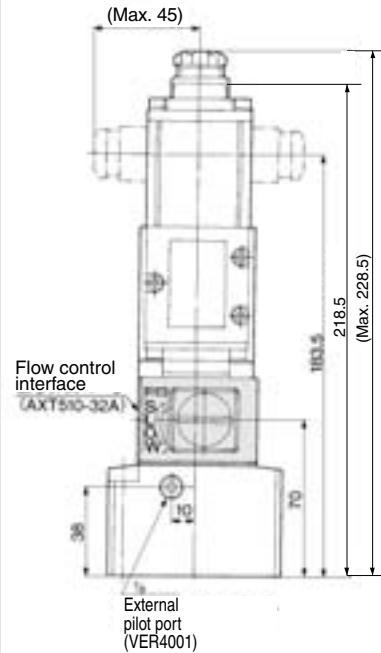
Note) Block packing ⑯: VER4001 (Outer pilot)

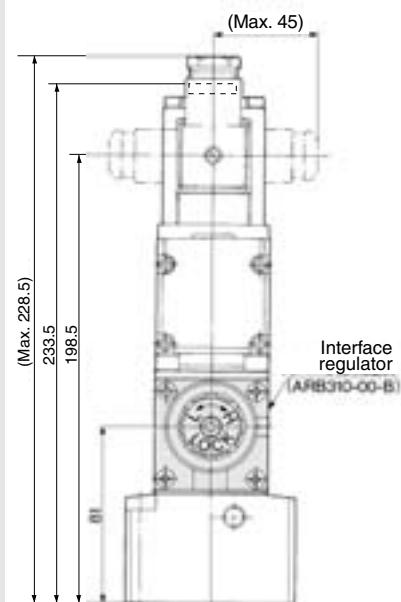

Series VER2000/4000

Dimensions


VER2000-□□□: With sub-plate

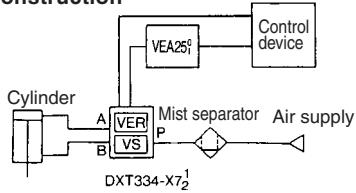


With flow control interface


With B port regulator

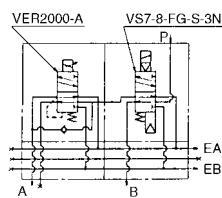

VER4000-□□□: With sub-plate

With flow control interface

With B port regulator


5 Port Electro-Pneumatic Proportional Valve Related Products:

A solenoid valve for actuating a cylinder and an electro-pneumatic proportional valve for pressure control have been integrated into a single unit. High response has been achieved.


- The size and the direction of the pipe port can be selected.
- The size of the electro-pneumatic proportion can be selected.
- Solenoid valves for actuating a 2 stage stroke gun cylinder or a clamp cylinder can be mounted on an integrated manifold (maximum of 8 stations).

Construction

Circuit (Basic unit: DXT334-X7₂¹)

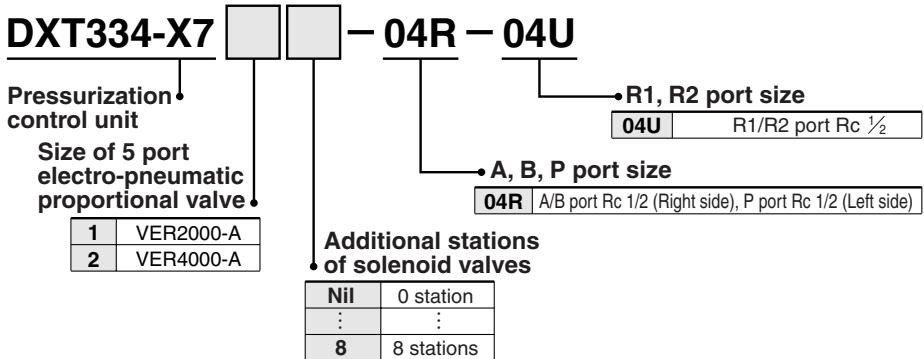
Specifications

Stations	Solenoid valves (8 stations at max.) can be added to the basic unit (2 stations). <small>Note)</small>
Port size	Rc $\frac{3}{8}$, $\frac{1}{2}$

Note) Composed of basic unit (VER4000-A, VS7-8-FG-S-3N)

Refer to Best Pneumatics No. 1 for details about solenoid valve.

VER²000-A

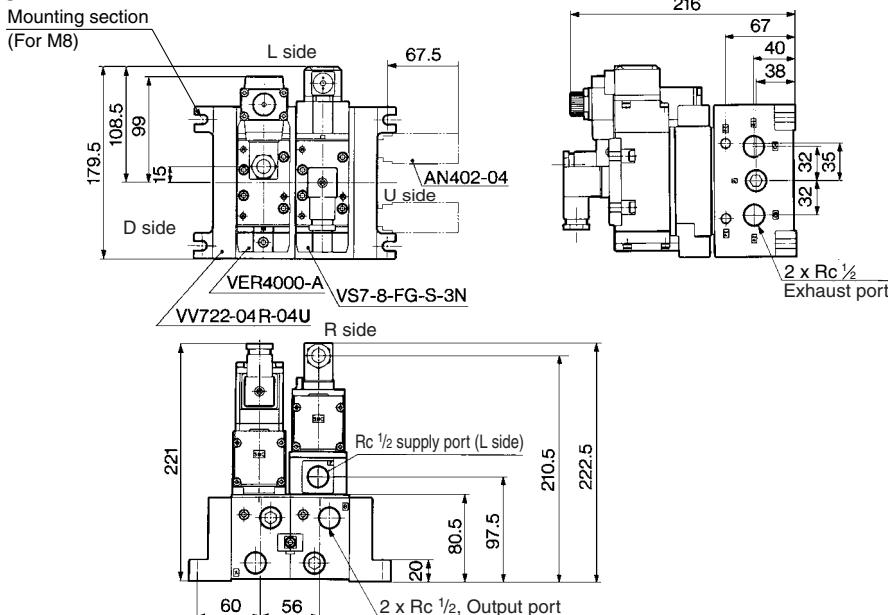

Set pressure range of A port <small>Note)</small>	0.1 to 0.9MPa
Power amplifier	VEA250, VEA251
Wiring	DIN terminal

Note) In the case of VER4000, set the inlet pressure by 0.05 MPa or higher than the required maximum set pressure.

VS7-8-FG-S-3N

Rated voltage	24 VDC (-15% to +10%)
Wiring	DIN terminal

How to Order



Ordering example

DXT334-X711-04R-04U 1 pc.
 VS7-8-FG-D-3M 1 pc.
 (Third station of manifold where 1 piece of "VS7-8-FG-D-3M" is added to the basic unit of "VER2000-A" and "VS7-8-FG-S-3N".)

Dimensions

DXT334-X72-04R-04U

ARJ

AR425
to 935

AMR

ARM

ARP

IR

IRV

VEX1

SRH

SRP

SRF

ARX20

VCHR

ITV

IC

PVQ

VEF

VEP

VER

VEA

VY2

VBA

VBAT

AP100